LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2018

MT 5409 - NUMERICAL METHODS

Date: 25-10-2018 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

Part A (Answer ALL questions)

 $(10 \times 2 = 20)$

- 1. Write the condition for convergence in Gauss Seidel method.
- 2. Solve x+2y=1 and 3x-2y=7 by Crammer's rule.
- 3. Find an iterative formula for $x = \sqrt{N}$.
- 4. State the formula to find the approximations to the root in Regula-Falsi method.
- 5. Write Newton's backward interpolation formula.
- 6. Construct the divided difference table for the following data:

х	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

- 7. Write Gauss forward interpolation formula.
- 8. State Newton's forward difference formulae to find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = x_0$.
- 9. Distinguish between Simpson's 1/3rd and 3/8th rule.
- 10. Define Numerical Integration.

Part B (Answer any FIVE questions)

 $(5 \times 8 = 40)$

- 11. Solve the system of equations x-2y+9z=8, 2x-8y+z=-5 and 3x+y-z=3 using Gauss elimination method.
- 12. Solve by Gauss-Seidel method, the following system of equations:

$$28x + 4y - z = 32$$
, $x + 3y + 10z = 24$ and $2x + 17y + 4z = 35$.

- 13. Find the root of the equation $\sin x = 1 + x^3$ using Newton-Raphson method correct to six decimal places.
- 14. Find the root of $xe^x = 3$ by regula falsi method correct to three decimal places.
- 15. The following data give I, the indicated HP and V, the speed in knots developed by a ship.

V	8	10	12	14	16
I	1000	1900	3250	5400	8950

Find I when V = 9, using Newton's forward interpolation formula.

- 16. Find the value of $\log_{10} 656$ using Newton's divided difference formula for the following data: $\log_{10} 654 = 2.8156$, $\log_{10} 658 = 2.8182$, $\log_{10} 659 = 2.8189$, $\log_{10} 661 = 2.8202$.
- 17. Use Stirling's formula to find y_{35} given that $y_{10} = 600$, $y_{20} = 512$, $y_{30} = 439$, $y_{40} = 346$, $y_{50} = 243$.
- 18. Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 in the range $0 \le x \le 0.3$ using Euler's method and modified Euler's method.

Part C (Answer any TWO questions)

 $(2 \times 20 = 40)$

- 19. a) Find a root of the equation $x^3 x 11 = 0$ correct to four decimals using bisection method.
 - b) Find a real root of the equation $\cos x = 3x 1$ correct to seven decimal places by the method of successive approximation.

$$(12 + 8)$$

20. a) Using Newton's formula for the data, find the pressure of the steam for the temperatures 142° and 175°.

Temp $C^0(t)$	140	150	160	170	180
Pressure kgf/cm2(P)	3.685	4.854	6.302	8.076	10.225

b) Use Lagrange's interpolation formula to find the value of y when x = 10 for the following data:

х	5	6	9	11
у	12	13	14	16

(12+8)

- 21. a) Apply Bessel's formula to obtain y_{25} given that $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$.
 - b) Use Laplace-Everett's formula to obtain f(1.15) given that f(1) = 1.000, f(1.10) = 1.049, f(1.20) = 1.096, f(1.30) = 1.140.

(10 + 10)

- 22. a) Using Taylor's series method, solve $\frac{dy}{dx} = x^2 y$, y(0) = 1 at x = 0.1 and 0.2.
 - b) Using Runge-Kutta methods of fourth order, solve for y(0.1) and y(0.2) given that $y' = xy + y^2$, y(0) = 1. (10 + 10)

\$\$\$\$\$\$\$\$\$\$